Distributed auditory cortical representations are modified when non-musicians are trained at pitch discrimination with 40 Hz amplitude modulated tones.

نویسندگان

  • Daniel J Bosnyak
  • Robert A Eaton
  • Larry E Roberts
چکیده

Several functional brain attributes reflecting neocortical activity have been found to be enhanced in musicians compared to non-musicians. Included are the N1m evoked magnetic field, P2 and right-hemispheric N1c auditory evoked potentials, and the source waveform of the magnetically recorded 40 Hz auditory steady state response (SSR). We investigated whether these functional brain attributes measured by EEG are sensitive to neuroplastic remodeling in non-musician subjects. Adult non-musicians were trained for 15 sessions to discriminate small changes in the carrier frequency of 40 Hz amplitude modulated pure tones. P2 and N1c auditory evoked potentials were separated from the SSR by signal processing and found to localize to spatially differentiable sources in the secondary auditory cortex (A2). Training enhanced the P2 bilaterally and the N1c in the right hemisphere where auditory neurons may be specialized for processing of spectral information. The SSR localized to sources in the region of Heschl's gyrus in primary auditory cortex (A1). The amplitude of the SSR (assessed by bivariate T2 in 100 ms moving windows) was not augmented by training although the phase of the response was modified for the trained stimuli. The P2 and N1c enhancements observed here and reported previously in musicians may reflect new tunings on A2 neurons whose establishment and expression are gated by input converging from other regions of the brain. The SSR localizing to A1 was more resistant to remodeling, suggesting that its amplitude enhancement in musicians may be an intrinsic marker for musical skill or an early experience effect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Does auditory discrimination training modify representations in both primary and secondary auditory cortex ?

Several components of evoked auditory potentials and magnetic fields have been reported to be enhanced by musical training and by laboratory discrimination training. The P2 component, believed to originate in secondary auditory cortex (A2), is highly plastic, and enhanced both in trained musicians and by a variety of acoustic discrimination tasks. The 40-Hz auditory steady-state response (SSR) ...

متن کامل

Subcortical and cortical correlates of pitch discrimination: Evidence for two levels of neuroplasticity in musicians

Musicians are highly trained to discriminate fine pitch changes but the neural bases of this ability are poorly understood. It is unclear whether such training-dependent differences in pitch processing arise already in the subcortical auditory system or are linked to more central stages. To address this question, we combined psychoacoustic testing with functional MRI to measure cortical and sub...

متن کامل

The effects of absolute pitch ability and musical training on lexical tone perception

The relationship between processing of speech and music was explored here via the linguistic vehicle of lexical tone. People with amusia have been found to be impaired on linguistic tasks; we examined whether absolute pitch (AP) possessors have an advantage on linguistic tasks. Participants were 3 groups of monolingual Australian-English speakers: non-AP musicians (musically-trained individuals...

متن کامل

Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians.

P2 and N1c components of the auditory evoked potential (AEP) have been shown to be sensitive to remodeling of the auditory cortex by training at pitch discrimination in nonmusician subjects. Here, we investigated whether these neuroplastic components of the AEP are enhanced in musicians in accordance with their musical training histories. Highly skilled violinists and pianists and nonmusician c...

متن کامل

Short-term functional plasticity in the human auditory cortex: an fMRI study.

Applying functional magnetic resonance imaging (fMRI) techniques, hemodynamic responses elicited by sequences of pure tones of 950 Hz (standard) and deviant tones of 952, 954, and 958 Hz were measured before and 1 week after subjects had been trained at frequency discrimination for five sessions (over 1 week) using an oddball procedure. The task of the subject was to detect deviants differing f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 14 10  شماره 

صفحات  -

تاریخ انتشار 2004